Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Sep 14 2023 08:37:07
%S 1,2,3,5,7,10,13,17,20,26,29,35,39,48,48,60,61,74,73,87,86,106,99,120,
%T 112,140,130,155,143,176,159,194,180,216,186,240,209,258,234,274,243,
%U 308,261,325,289,348,297,383,314,392,356,423,355,460,372,468,422
%N Number of partitions of n having no parts strictly between the smallest and the largest part (n>=1).
%H Alois P. Heinz, <a href="/A265250/b265250.txt">Table of n, a(n) for n = 1..10000</a>
%H Jonathan Bloom, Nathan McNew, <a href="https://arxiv.org/abs/1908.03953">Counting pattern-avoiding integer partitions</a>, arXiv:1908.03953 [math.CO], 2019.
%F a(n) = A265249(n,0).
%F G.f.: G(x) = Sum_{i>=1} x^i/(1-x^i) + Sum_{i>=1} Sum_{j>=i+1} x^(i+j)/ ((1-x^i)*(1-x^j)).
%F a(n) = A116608(n,1) + A116608(n,2) = A000005(n) + A002133(n). - _Seiichi Manyama_, Sep 14 2023
%e a(3) = 3 because we have [3], [1,2], [1,1,1] (all partitions of 3).
%e a(6) = 10 because we have all A000041(6) = 11 partitions of 6 except [1,2,3].
%e a(7) = 13 because we have all A000041(7) = 15 partitions of 7 except [1,2,4] and [1,1,2,3].
%p g := add(x^i/(1-x^i), i = 1 .. 80)+add(add(x^(i+j)/((1-x^i)*(1-x^j)), j = i+1..80),i=1..80): gser := series(g,x=0,60): seq(coeff(gser,x,n),n=1..50);
%p # second Maple program:
%p b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p `if`(t=1, `if`(irem(n, i)=0, 1, 0)+b(n, i-1, t),
%p add(b(n-i*j, i-1, t-`if`(j=0, 0, 1)), j=0..n/i))))
%p end:
%p a:= n-> b(n$2, 2):
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Jan 01 2016
%t b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, If[t == 1, If[Mod[n, i] == 0, 1, 0] + b[n, i - 1, t], Sum[b[n - i*j, i - 1, t - If[j == 0, 0, 1]], {j, 0, n/i}]]]]; a[n_] := b[n, n, 2]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Dec 22 2016, after _Alois P. Heinz_ *)
%Y Cf. A000041, A265249.
%Y Cf. A000005, A002133, A116608, A309058.
%K nonn,look
%O 1,2
%A _Emeric Deutsch_, Dec 25 2015