[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253825
Numbers n = concat(s,t) such that n = (sigma(s)-s) * (sigma(t)-t), where sigma(x)-x is the sum of the aliquot parts of x.
9
6396, 20680, 124416, 567816, 1719480, 7593432, 10538040, 36382320, 107277800, 123251968, 166601760, 327844840, 933363000, 1286859804, 2524125184, 3398418000, 4561432920, 4566915540, 4911440776, 7097433536, 16913792670, 20565608940, 21099997800, 27639552000
OFFSET
1,1
COMMENTS
a(28) > 10^11. - Hiroaki Yamanouchi, Sep 26 2015
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 1..27
EXAMPLE
6396 = concat(63,96) -> sigma(63)-63 = 41, sigma(96)-96 = 156 and 41*156 = 6396.
20680 = concat(20,680) -> sigma(20)-20 = 22, sigma(680)-680 = 940 and 22*940 = 20680.
124416 = concat(12,4416) -> sigma(12)-12 = 16, sigma(4416)-4416 = 7776 and 16*7776 = 124416.
567816 = concat(567,816) -> sigma(567)-567 = 410, sigma(816)-816 = 1416 and 401*1416 = 567816.
MAPLE
with(numtheory): P:=proc(q) local s, t, k, n;
for n from 1 to q do for k from 1 to ilog10(n) do s:=n mod 10^k; t:=trunc(n/10^k); if s*t>0 then if (sigma(s)-s)*(sigma(t)-t)=n
then print(n); break; fi; fi; od; od; end: P(10^6);
MATHEMATICA
fQ[n_] := Block[{idn = IntegerDigits@ n, lng = Floor@ Log10@ n}, MemberQ[ Table[s = FromDigits@ Take[idn, {1, i}]; t = FromDigits@ Take[idn, {i + 1, lng + 1}]; (DivisorSigma[1, s] - s) (DivisorSigma[1, t] - t), {i, lng}], n]]; k = 1; lst = {}; While[k < 100000001, If[fQ@ k, AppendTo[lst, k]; Print@ k]; k++] (* Robert G. Wilson v, Jan 26 2015 *)
PROG
(PARI) isok(n) = {len = #Str(n); for (k=1, len-1, na = n\10^k; nb = n % 10^k; if (nb && (n == (sigma(na)-na)*(sigma(nb)-nb)), return (1)); ); } \\ Michel Marcus, Jan 15 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jan 15 2015
EXTENSIONS
a(8) & a(9) from Robert G. Wilson v, Jan 26 2015
a(10)-a(24) from Hiroaki Yamanouchi, Sep 26 2015
STATUS
approved