[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every 2X2 subblock diagonal minimum minus antidiagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal maximum nondecreasing vertically
8

%I #4 Dec 29 2014 09:08:53

%S 16,47,47,125,132,125,335,306,306,335,907,742,494,742,907,2470,1775,

%T 914,914,1775,2470,6740,4158,1709,1498,1709,4158,6740,18406,9551,3241,

%U 2543,2543,3241,9551,18406,50278,21591,6231,4490,3936,4490,6231,21591,50278

%N T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every 2X2 subblock diagonal minimum minus antidiagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal maximum nondecreasing vertically

%C Table starts

%C .....16.....47...125...335...907..2470...6740..18406..50278.137354.375250

%C .....47....132...306...742..1775..4158...9551..21591..48179.106371.232787

%C ....125....306...494...914..1709..3241...6231..12122..23800..47037..93377

%C ....335....742...914..1498..2543..4490...8216..15476..29780..58148.114620

%C ....907...1775..1709..2543..3936..6414..11022..19851..37083..71082.138576

%C ...2470...4158..3241..4490..6414..9630..15363..26064..46635..86880.166407

%C ...6740...9551..6231..8216.11022.15363..22656..35736..60273.107607.200418

%C ..18406..21591.12122.15476.19851.26064..35736..52110..81672.137394.245220

%C ..50278..48179.23800.29780.37083.46635..60273..81672.118182.184503.310035

%C .137354.106371.47037.58148.71082.86880.107607.137394.184503.265458.413307

%H R. H. Hardin, <a href="/A253231/b253231.txt">Table of n, a(n) for n = 1..833</a>

%F Empirical for column k:

%F k=1: a(n) = 3*a(n-1) -2*a(n-3) for n>6

%F k=2: a(n) = 5*a(n-1) -8*a(n-2) +4*a(n-3) for n>7

%F k=3..7: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4) for n>8

%e Some solutions for n=4 k=4

%e ..0..0..0..0..1....0..1..0..0..1....0..1..1..1..1....0..0..1..1..1

%e ..1..0..0..0..0....0..1..0..0..0....0..1..1..1..1....0..0..0..0..0

%e ..1..0..0..0..0....0..1..0..0..0....1..1..1..1..1....1..1..0..0..0

%e ..1..0..0..0..0....1..1..0..0..0....0..0..0..0..0....1..1..0..0..0

%e ..1..0..0..1..1....1..1..0..0..0....0..0..0..0..1....1..0..0..1..1

%Y Column 1 is A204609

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 29 2014