[go: up one dir, main page]

login
A251092
a(n) is the number of primes in the n-th group of consecutive primes among the odd numbers.
73
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
Explanation:
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,... = Odd numbers
^ ^ ^ ^ ^ ^ ^ ^ = Prime numbers
<---3---> <--2--> <--2--> <-1-> = Primes beside other primes divided into groups of how many there are.
Note that the first group (3, 5 and 7) is the only group of 3. Therefore the rest of the sequence only consists of 1's and 2's.
Essentially the same as A175632. - Robert Israel, Mar 29 2015
LINKS
MAPLE
N:= 1000: # to use the first N+1 odd numbers
L:= map(t -> isprime(2*t+1), [$1..N]):
Starts:= [1, op(select(i -> L[i] and not L[i-1], [$2..N]))]:
Ends:= select(i -> L[i] and not L[i+1], [$1..N-1]):
seq(Ends[i]-Starts[i]+1, i=1..nops(Ends)); # Robert Israel, Mar 27 2015
MATHEMATICA
Length /@ Split[Select[2 Range@ 1200 - 1, PrimeQ], #2 - #1 == 2 &] (* Michael De Vlieger, Mar 20 2015 *)
Length/@DeleteCases[Split[Table[If[PrimeQ[n], 1, 0], {n, 3, 1001, 2}]], _?(FreeQ[ #, 1]&)] (* Harvey P. Dale, Jun 29 2021 *)
CROSSREFS
Cf. A000040 (prime numbers), A005408 (odd numbers), A001097 (twin primes), A175632.
Sequence in context: A152159 A341941 A090341 * A175632 A226481 A088435
KEYWORD
nonn
AUTHOR
STATUS
approved