[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250427
Number of (n+1)X(3+1) 0..1 arrays with nondecreasing sum of every two consecutive values in every row and column
2
81, 324, 1296, 3600, 10000, 22500, 50625, 99225, 194481, 345744, 614656, 1016064, 1679616, 2624400, 4100625, 6125625, 9150625, 13176900, 18974736, 26501904, 37015056, 50381604, 68574961, 91298025, 121550625, 158760000, 207360000
OFFSET
1,1
COMMENTS
Column 3 of A250432
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)
Empirical for n mod 2 = 0: a(n) = (1/4096)*n^8 + (1/128)*n^7 + (55/512)*n^6 + (53/64)*n^5 + (1001/256)*n^4 + (185/16)*n^3 + (167/8)*n^2 + 21*n + 9
Empirical for n mod 2 = 1: a(n) = (1/4096)*n^8 + (1/128)*n^7 + (111/1024)*n^6 + (109/128)*n^5 + (8483/2048)*n^4 + (1635/128)*n^3 + (24975/1024)*n^2 + (3375/128)*n + (50625/4096).
a(n+1) = A202094(n). - R. J. Mathar, Dec 04 2014
EXAMPLE
Some solutions for n=6
..0..0..0..0....0..0..0..1....0..0..1..1....0..0..0..0....0..0..1..0
..0..0..1..1....0..0..0..0....0..0..1..0....0..0..0..1....0..0..1..0
..0..0..1..0....0..0..0..1....0..0..1..1....0..0..1..1....0..0..1..1
..0..0..1..1....0..0..0..1....0..0..1..0....0..0..0..1....1..0..1..0
..0..0..1..1....0..0..1..1....0..1..1..1....0..0..1..1....0..0..1..1
..1..0..1..1....0..0..1..1....1..0..1..0....0..0..0..1....1..0..1..0
..1..0..1..1....1..1..1..1....0..1..1..1....0..1..1..1....1..1..1..1
CROSSREFS
Sequence in context: A237405 A250443 A017162 * A236828 A236821 A237511
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 22 2014
STATUS
approved