[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250413
Number of length n+1 0..2 arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.
1
5, 17, 38, 125, 335, 1061, 3069, 9495, 28221, 86149, 258252, 782393, 2350442, 7090347, 21303611, 64109181, 192553620, 578665211, 1737374865, 5217197093, 15659477401, 47004010481, 141055441813, 423295193635, 1270118805510
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 3*a(n-2) - 40*a(n-3) + 59*a(n-4) + 68*a(n-5) - 146*a(n-6) - 14*a(n-7) + 91*a(n-8) - 8*a(n-9) - 12*a(n-10).
Empirical g.f.: x*(5 - 13*x - 49*x^2 + 148*x^3 + 84*x^4 - 397*x^5 + 40*x^6 + 257*x^7 - 36*x^8 - 36*x^9) / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 3*x)*(1 - 2*x - x^2 + x^3)*(1 - 3*x^2 - x^3)). - Colin Barker, Nov 14 2018
EXAMPLE
Some solutions for n=6:
..2....0....1....2....2....2....2....2....0....2....2....0....1....0....2....1
..2....0....2....0....1....1....0....1....1....2....0....0....1....0....0....2
..1....0....1....2....0....0....1....1....2....1....1....1....0....1....2....1
..2....2....1....2....2....0....0....0....2....2....1....1....1....1....1....2
..1....0....2....2....2....0....0....0....0....2....0....1....2....2....0....0
..2....2....2....1....1....1....2....0....1....0....1....0....1....2....1....2
..0....0....2....1....0....1....0....1....2....0....1....0....2....2....1....1
CROSSREFS
Column 2 of A250419.
Sequence in context: A212968 A127744 A122734 * A163686 A147165 A147257
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 22 2014
STATUS
approved