[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259915
Least positive integer k such that phi(k) and sigma(k*n) are both squares, where phi(.) is Euler's totient function and sigma(m) is the sum of all positive divisors of m.
5
1, 85, 1, 273, 34, 85, 10, 364, 250, 17, 2, 2223, 204, 5, 34, 546, 10, 60, 680, 60, 10, 1, 5, 364, 48, 34, 40, 451, 136, 17, 10, 273, 2, 5, 2, 5089, 10570, 1020, 451, 10, 60, 5, 1970, 114, 114, 17, 2, 4446, 185, 8, 10, 17, 5, 546, 17, 285, 63, 204, 8, 540, 816, 5, 57, 147744, 2761, 1, 505, 451, 5, 1
OFFSET
1,2
COMMENTS
Conjecture: a(n) exists for any n > 0. In general, every positive rational number r can be written as m/n, where m and n are positive integers with phi(m) and sigma(n) both squares of integers.
For example, 4/5 = 136/170 with phi(136) = 8^2 and sigma(170) = 18^2, and 5/4 = 1365/1092 with phi(1365) = 24^2 and sigma(1092) = 56^2.
REFERENCES
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
EXAMPLE
a(2) = 85 since phi(85) = 64 = 8^2 and sigma(85*2) = 324 = 18^2.
a(673) = 3451030792 since phi(3451030792) = 1564993600 = 39560^2 and sigma(3451030792*673) = sigma(2322543723016) = 4768807737600 = 2183760^2.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[n]]
sigma[n_]:=DivisorSigma[1, n]
Do[k=0; Label[aa]; k=k+1; If[SQ[EulerPhi[k]]&&SQ[sigma[k*n]], Goto[bb], Goto[aa]]; Label[bb]; Print[n, " ", k]; Continue, {n, 1, 70}]
(* Second program: *)
Table[k = 1; While[Times @@ Boole@ Map[IntegerQ@ Sqrt@ # &, {EulerPhi@ k, DivisorSigma[1, k n]}] < 1, k++]; k, {n, 70}] (* Michael De Vlieger, May 04 2017 *)
PROG
(Perl) use ntheory ":all"; for my $n (1..100) { my $k = 1; $k++ until is_power(euler_phi($k), 2) && is_power(divisor_sum($k*$n), 2); say "$n $k" } # Dana Jacobsen, May 04 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jul 08 2015
STATUS
approved