[go: up one dir, main page]

login
a(n) = 24*n - 18.
6

%I #44 Nov 16 2023 05:22:28

%S 6,30,54,78,102,126,150,174,198,222,246,270,294,318,342,366,390,414,

%T 438,462,486,510,534,558,582,606,630,654,678,702,726,750,774,798,822,

%U 846,870,894,918,942,966,990,1014,1038,1062,1086,1110,1134,1158,1182,1206

%N a(n) = 24*n - 18.

%C Original name: Numbers n such that n/A259748(n) = 6.

%C Partial sums give A152746. - _Leo Tavares_, Jul 29 2023

%H Danny Rorabaugh, <a href="/A259752/b259752.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F A259748(a(n))/a(n) = 1/6.

%F a(n) = 6*A016813(n-1). - _Michel Marcus_, Jul 18 2015

%F G.f.: 6*x*(3*x+1)/(x-1)^2. - _Alois P. Heinz_, Jul 29 2023

%t A[n_] := A[n] = Sum[a b, {a, 1, n}, {b, a + 1, n}] ; Select[Range[600], Mod[A[#], #]/# == 1/6 & ]

%Y Cf. A000914, A063128, A063148, A152746.

%Y Other sequences of numbers n such that A259748(n)/n equals a constant: A008606, A073762, A259749, A259750, A259751, A259754, A259755.

%K nonn,easy

%O 1,1

%A _José María Grau Ribas_, Jul 12 2015

%E Better name from _Danny Rorabaugh_, Oct 22 2015