[go: up one dir, main page]

login
A258990
Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,4).
8
2, 0, 7, 5, 0, 5, 0, 1, 4, 6, 1, 5, 7, 3, 2, 0, 9, 5, 9, 0, 7, 8, 0, 7, 6, 0, 5, 4, 9, 4, 6, 7, 1, 4, 6, 5, 4, 4, 1, 8, 2, 8, 6, 7, 9, 5, 5, 0, 6, 0, 6, 1, 9, 0, 4, 1, 9, 5, 1, 7, 8, 9, 6, 5, 6, 9, 7, 1, 0, 1, 1, 9, 9, 7, 1, 6, 0, 7, 8, 0, 0, 7, 8, 0, 9, 8, 6, 6, 4, 3, 6, 3, 3, 0, 5, 2, 3, 0, 2, 0, 2, 9, 6, 5, 9
OFFSET
0,1
FORMULA
zetamult(3,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^4)) = 10*zeta(2)*zeta(5) + zeta(3)*zeta(4) - 18*zeta(7).
EXAMPLE
0.20750501461573209590780760549467146544182867955060619041951789656971...
MATHEMATICA
RealDigits[10*Zeta[2]*Zeta[5] + Zeta[3]*Zeta[4] - 18*Zeta[7], 10, 105] // First
PROG
(PARI) zetamult([3, 4]) \\ Charles R Greathouse IV, Jan 21 2016
CROSSREFS
Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258991 (4,4).
Sequence in context: A011343 A326731 A021486 * A351727 A337450 A228819
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved