[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258762
Decimal expansion of Ls_6(Pi/3), the value of the 6th basic generalized log-sine integral at Pi/3.
4
1, 2, 0, 0, 2, 0, 7, 6, 1, 3, 7, 1, 0, 5, 5, 3, 0, 0, 1, 7, 5, 5, 0, 4, 8, 8, 8, 6, 3, 9, 1, 9, 2, 7, 6, 1, 4, 8, 3, 4, 4, 8, 9, 2, 5, 0, 4, 4, 3, 0, 1, 4, 6, 8, 9, 8, 2, 1, 6, 8, 9, 5, 1, 9, 4, 6, 3, 0, 4, 8, 6, 4, 0, 9, 9, 9, 5, 5, 0, 2, 0, 4, 5, 3, 8, 2, 5, 4, 6, 2, 8, 5, 3, 2, 9, 8, 2, 0, 6, 3, 7, 2, 5
OFFSET
3,2
FORMULA
-Integral_{0..Pi/3} log(2*sin(x/2))^5 dx = (15/2)*Pi*zeta(5) + (35/36)*Pi^3*zeta(3) - (135/4)*Im(-PolyLog(6, (-1)^(1/3)) + PolyLog(6, -(-1)^(2/3))).
Also equals 120 * 7F6(1/2,1/2,...; 3/2,3/2,...; 1/4) (with 7F6 the hypergeometric function).
EXAMPLE
120.0207613710553001755048886391927614834489250443014689821689519463 ...
MATHEMATICA
RealDigits[120* HypergeometricPFQ[Table[1/2, {7}], Table[3/2, {6}], 1/4], 10, 103] // First
CROSSREFS
Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)).
Cf. A143298 (Ls_2(Pi/3)), A258759 (Ls_3(Pi/3)), A258760 (Ls_4(Pi/3)), A258761 (Ls_5(Pi/3)), A258763 (Ls_7(Pi/3)).
Sequence in context: A361015 A028959 A317642 * A079181 A093693 A224447
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved