Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Dec 28 2020 09:53:43
%S 42,1485,34034,647920,11187462,182587701,2880017910,44477796451,
%T 677940669900,10250875770135,154278143783022,2316262521915440,
%U 34742240691197182,521131993897607925,7822497290908844702,117554364707534272375,1769075045150700563052
%N Number of words of length 2n such that all letters of the quinary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word.
%H Alois P. Heinz, <a href="/A258492/b258492.txt">Table of n, a(n) for n = 5..800</a>
%F a(n) ~ 16^n / (54*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Jun 01 2015
%p A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
%p add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1))
%p end:
%p T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k):
%p a:= n-> T(n, 5):
%p seq(a(n), n=5..25);
%t A[n_, k_] := A[n, k] = If[n == 0, 1, (k/n) Sum[Binomial[2n, j] (n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];
%t T[n_, k_] := Sum[(-1)^i A[n, k - i]/(i! (k - i)!), {i, 0, k}];
%t a[n_] := T[n, 5];
%t a /@ Range[5, 25] (* _Jean-François Alcover_, Dec 28 2020, after _Alois P. Heinz_ *)
%Y Column k=5 of A256117.
%K nonn
%O 5,1
%A _Alois P. Heinz_, May 31 2015