[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257957
Decimal expansion of log(Gamma(1/Pi)).
10
1, 0, 3, 3, 6, 4, 6, 1, 2, 5, 7, 6, 5, 5, 8, 2, 7, 0, 6, 4, 8, 5, 5, 3, 7, 4, 5, 5, 3, 3, 1, 6, 1, 7, 8, 6, 6, 7, 1, 0, 0, 3, 0, 8, 7, 0, 1, 5, 9, 5, 9, 8, 8, 6, 0, 4, 4, 8, 2, 1, 8, 5, 7, 5, 2, 9, 5, 1, 1, 3, 1, 2, 7, 1, 4, 7, 9, 4, 5, 4, 4, 8, 1, 4, 7, 9, 6, 9, 8, 4, 1, 8, 5, 8, 0, 5, 3, 8, 5, 5, 1, 6, 8
OFFSET
1,3
COMMENTS
The reference gives an interesting series representation with rational coefficients for log(Gamma(1/Pi)) = (1-1/Pi)*log(Pi) - 1/Pi + log(2)/2 + (1 + 1/4 + 1/12 + 1/32 + 1/75 + 1/144 + 13/2880 + 157/46080 + ...)/(2*Pi).
The value log(Gamma(1/Pi)) is also intimately related to integral_{x=0..1} arctan(arctanh(x))/x (A257963).
EXAMPLE
1.0336461257655827064855374553316178667100308701595988...
MAPLE
evalf(log(GAMMA(1/Pi)), 120);
MATHEMATICA
RealDigits[Log[Gamma[1/Pi]], 10, 120][[1]]
PROG
(PARI) default(realprecision, 120); log(gamma(1/Pi))
KEYWORD
nonn,cons
AUTHOR
STATUS
approved