Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 08 2022 08:46:12
%S 143,253,440,1133,1397,3608,6325,11495,20152,52063,64207,165880,
%T 290807,528517,926552,2393765,2952125,7626872,13370797,24300287,
%U 42601240,110061127,135733543,350670232,614765855,1117284685,1958730488,5060418077,6240790853
%N Positive integers whose square is the sum of 33 consecutive squares.
%C Positive integers x in the solutions to 2*x^2-66*y^2-2112*y-22880 = 0.
%H Colin Barker, <a href="/A257767/b257767.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,46,0,0,0,0,0,-1).
%F a(n) = 46*a(n-6)-a(n-12).
%F G.f.: -11*x*(8*x^11+5*x^10+5*x^9+8*x^8+13*x^7+23*x^6-328*x^5-127*x^4-103*x^3-40*x^2-23*x-13) / (x^12-46*x^6+1).
%e 143 is in the sequence because 143^2 = 20449 = 7^2+8^2+...+39^2.
%t LinearRecurrence[{0, 0, 0, 0, 0, 46, 0, 0, 0, 0, 0, -1}, {143, 253, 440, 1133, 1397, 3608, 6325, 11495, 20152, 52063, 64207, 165880}, 50] (* _Vincenzo Librandi_, May 08 2015 *)
%o (PARI) Vec(-11*x*(8*x^11+5*x^10+5*x^9+8*x^8+13*x^7+23*x^6-328*x^5-127*x^4-103*x^3-40*x^2-23*x-13) / (x^12-46*x^6+1) + O(x^100))
%o (Magma) I:=[143,253,440,1133,1397,3608,6325,11495,20152, 52063,64207,165880]; [n le 12 select I[n] else 46*Self(n-6)-Self(n-12): n in [1..30]]; // _Vincenzo Librandi_, May 11 2015
%Y Cf. A001032, A001653, A180274, A218395, A257761, A257765, A257780, A257781, A257823-A257828.
%K nonn,easy
%O 1,1
%A _Colin Barker_, May 07 2015