[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257693
Numbers such that the smallest nonzero digit present (A257679) in their factorial base representation is 3.
5
18, 72, 90, 114, 360, 378, 432, 450, 456, 474, 498, 552, 570, 594, 618, 672, 690, 714, 2160, 2178, 2232, 2250, 2256, 2274, 2520, 2538, 2592, 2610, 2616, 2634, 2640, 2658, 2712, 2730, 2736, 2754, 2760, 2778, 2832, 2850, 2856, 2874, 2898, 2952, 2970, 2994, 3240, 3258, 3312, 3330, 3336, 3354, 3378, 3432, 3450, 3474, 3498, 3552
OFFSET
1,1
COMMENTS
Numbers k for which A257679(k) = 3.
EXAMPLE
Factorial base representation (A007623) of 18 is "300" (as 18 = 3*3! + 0*2! + 0*1!), thus a(18) = 3.
MATHEMATICA
q[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; !ContainsAny[s, {1, 2}] && MemberQ[s, 3]]; Select[Range[3600], q] (* Amiram Eldar, Feb 14 2024 *)
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A257693 (MATCHING-POS 1 1 (lambda (n) (= 3 (A257679 n)))))
(Python)
def A(n, p=2): return n if n<p else A(n//p, p+1)*10 + n%p
def a(n): return 0 if n==0 else min([int(i) for i in str(A(n)) if i !='0'])
print([n for n in range(1, 4001) if a(n)==3]) # Indranil Ghosh, Jun 19 2017
CROSSREFS
Row 3 of A257503.
Cf. also A257263.
Sequence in context: A059224 A174492 A088490 * A231328 A274577 A347360
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, May 04 2015
STATUS
approved