[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257685
Left inverse for injection A255411: a(0) = 0, after which, if n = A255411(k) for some k, then a(n) = k, otherwise a(n) = 0.
5
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 4, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 9, 0, 10, 0, 0, 0, 11, 0, 12, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 15, 0, 16, 0, 0, 0, 17, 0, 18, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 21, 0, 22, 0, 0, 0, 23, 0, 0
OFFSET
0,13
LINKS
FORMULA
a(0) = 0, after which, if n = A255411(k) for some k, then a(n) = k, otherwise a(n) = 0.
a(n) = (1-A257680(n)) * A257684(n).
Other identities:
For all n >= 0, a(A255411(n)) = n. [This sequence works as a left inverse of A255411.]
MATHEMATICA
Position[Select[Range[0, 120], ! MemberQ[IntegerDigits[#, MixedRadix[Reverse@ Range@ 12]], 1] &], #] - 1 & /@ Range[0, 120] /. {} -> 0 // Flatten (* Michael De Vlieger, May 30 2016, Version 10.2 *)
PROG
(Scheme) (define (A257685 n) (* (- 1 (A257680 n)) (A257684 n)))
(Python)
from sympy import factorial as f
def a007623(n, p=2):
return n if n<p else a007623(n//p, p+1)*10 + n%p
def a257684(n):
x=str(a007623(n))[:-1]
y="".join(str(int(i) - 1) if int(i)>0 else '0' for i in x)[::-1]
return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in range(len(y))])
def a257680(n): return 1 if '1' in str(a007623(n)) else 0
def a(n): return (1 - a257680(n))*a257684(n)
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 21 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 04 2015
STATUS
approved