[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257242
Random Fibonacci tree defined with the pair(1,1).
1
1, 1, 0, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 5, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 2, 4, 2, 4, 2, 8, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 5, 1, 7, 1, 3, 3, 5, 3, 7, 3, 13, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 3
OFFSET
1,4
COMMENTS
"By the random Fibonacci tree of the pair (a,b) we mean the binary tree denoted by T(a,b) and defined in the following way: a is the root, b its only child; if x is the parent of y, then y has two children, which are x + y and abs(x-y)."
"The sequence of labels in the tree read in breadth-first order (1, 1, 0, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 5. . . ), gives an example of a 2-regular sequence in the terminology given by Allouche and Shallit (see links)."
LINKS
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.
B. Rittaud, On the Average Growth of Random Fibonacci Sequences, Journal of Integer Sequences, 10 (2007), Article 07.2.4.
EXAMPLE
[1];
[1];
[0, 2];
[1, 1, 1, 3];
[1, 1, 1, 1, 1, 3, 1, 5];
[0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 2, 4, 2, 4, 2, 8];
...
PROG
(PARI) lchild(a, b) = abs(b-a);
rchild(a, b) = b+a;
tablf(nn) = {print(prow = [1]); print(crow = [1]); nrow = vector(2); nrow[1] = lchild(prow[1], crow[1]); nrow[2] = rchild(prow[1], prow[1]); print(nrow); for (n=4, nn, prow = crow; crow = nrow; nrow = vector(4*#prow); inew = 0; ichild = 0; for (inode=1, #prow, node = prow[inode]; child = crow[ichild++]; nrow[inew++] = lchild(node, child); nrow[inew++] = rchild(node, child); child = crow[ichild++]; nrow[inew++] = lchild(node, child); nrow[inew++] = rchild(node, child); ); print(nrow); ); }
CROSSREFS
Cf. A257243.
Sequence in context: A318997 A355662 A069897 * A337908 A325789 A356352
KEYWORD
nonn,tabf
AUTHOR
Michel Marcus, Apr 19 2015
STATUS
approved