[go: up one dir, main page]

login
A255902
Decimal expansion of the limit as n tends to infinity of n*s_n, where the s_n are the hexagonal circle-packing rigidity constants.
0
4, 4, 5, 1, 6, 5, 0, 6, 9, 8, 0, 8, 9, 2, 2, 1, 5, 3, 8, 2, 4, 7, 9, 9, 8, 7, 8, 2, 7, 4, 0, 1, 2, 5, 5, 0, 9, 9, 6, 9, 3, 8, 7, 5, 0, 3, 9, 7, 4, 5, 7, 6, 8, 7, 3, 6, 3, 9, 6, 8, 6, 5, 2, 9, 9, 1, 9, 2, 4, 1, 3, 1, 8, 8, 3, 6, 0, 8, 6, 6, 4, 1, 2, 7, 5, 3, 0, 2, 3, 1, 7, 7, 8, 3, 7, 0, 0, 1, 3, 2, 9, 2
OFFSET
1,1
LINKS
P. Doyle, Zheng-Xu He, and B. Rodin, The asymptotic value of the circle-packing rigidity constants, Discrete Comput. Geom. 12 (1994).
Eric Weisstein's MathWorld, Conformal Radius
FORMULA
(2^(4/3)/3)*gamma(1/3)^2/gamma(2/3).
Equals 4/R, where R = 2^(2/3)*gamma(2/3)/(gamma(1/3)*gamma(4/3)) is the conformal radius in a mapping from the unit disk to the unit side hexagon satisfying certain conditions.
EXAMPLE
4.4516506980892215382479987827401255099693875...
MATHEMATICA
RealDigits[(2^(4/3)/3)*Gamma[1/3]^2/Gamma[2/3], 10, 102] // First
CROSSREFS
Cf. A073005 (gamma(1/3)), A073006 (gamma(2/3)).
Sequence in context: A021696 A006581 A370717 * A019922 A092171 A179778
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved