[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255676
E.g.f. satisfies: A'(x) = (1 + A(x))*(1 + A(x)^2).
0
1, 1, 3, 15, 81, 561, 4683, 44415, 479241, 5793921, 77332563, 1130944815, 17984844801, 308888337681, 5698762943643, 112401325405215, 2360158641832761, 52564270139375841, 1237645528139173923, 30717272450961249615, 801500394828539219121
OFFSET
1,3
FORMULA
E.g.f.: Series_Reversion( Integral 1/((1+x)*(1+x^2)) dx ).
E.g.f.: Series_Reversion( (log((1+x)^2/(1+x^2)) + 2*atan(x))/4 ).
E.g.f. A(x) satisfies: (1 + A(x))^2/(1 + A(x)^2) = exp(4*x) / exp(2*atan(A(x))).
a(n) ~ 2^(2*n+1) * n^n / (exp(n) * Pi^(n+1/2)). - Vaclav Kotesovec, Jul 17 2015
EXAMPLE
E.g.f.: A(x) = x + x^2/2! + 3*x^3/3! + 15*x^4/4! + 81*x^5/5! + 561*x^6/6! +..
where
(1 + A(x))*(1 + A(x)^2) = 1 + x + 3*x^2/2! + 15*x^3/3! + 81*x^4/4! + 561*x^5/5! +...+ a(n+1)*x^n/n! +...
The series reversion of the e.g.f. equals Integral 1/(1+x+x^2+x^3) dx:
Series_Reversion(A(x)) = x - x^2/2 + x^5/5 - x^6/6 + x^9/9 - x^10/10 + x^13/13 - x^14/16 + x^17/17 - x^18/18 +...
which equals (log((1+x)^2/(1+x^2)) + 2*atan(x))/4.
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[(Log[(1+x)^2/(1+x^2)] + 2*ArcTan[x])/4, {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jul 17 2015 *)
PROG
(PARI) {a(n) = local(A=x); for(i=1, n, A = intformal( (1+A)*(1+A^2) +x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n) = local(A=x); A = serreverse( intformal( 1/((1+x)*(1+x^2) +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A122868 A264225 A343975 * A015680 A371516 A084208
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 10 2015
STATUS
approved