[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255197
Number of dissections of a convex polygon with n+3 sides that have exactly one triangle, and that triangle shares at least one side with the exterior polygon.
3
1, 0, 5, 6, 35, 80, 306, 880, 3003, 9384, 31070, 100226, 330015, 1079392, 3559001, 11724930, 38772445, 128313480, 425553513, 1412911148, 4697992880, 15637660896, 52109660575, 173809285676, 580261793715, 1938778221800, 6482844907190, 21692435752290, 72633495206803
OFFSET
0,3
LINKS
FORMULA
a(n) = (n+3)/(n+2) * Sum_{k=1..n/2} C(n+k+1,k)*C(n-k-1,k-1)*(n+2*k)/(n+k+1) , n>0.
Recurrence: 5*(n-2)*n*(n+1)^2*(n+2)^2*(481*n^2 - 1003*n + 540)*a(n) = 4*n*(n+1)^2*(n+3)*(962*n^4 - 3449*n^3 + 3262*n^2 - 784*n - 180)*a(n-1) + 4*(n-1)*n*(n+2)*(n+3)*(3848*n^4 - 11872*n^3 + 12073*n^2 - 3572*n - 180)*a(n-2) - 2*(n-2)*(n-1)*(n+1)*(n+2)*(n+3)*(2*n-5)*(481*n^2 - 41*n + 18)*a(n-3). - Vaclav Kotesovec, Feb 19 2015
a(n) ~ c * d^n / sqrt(Pi*n), where d = 3.40869819984215108586... is the root of the equation 4 - 32*d - 8*d^2 + 5*d^3 = 0, and c = 0.838651324525827608604668464... is the root of the equation 169 + 157184*c^2 - 275872*c^4 + 74000*c^6 = 0. - Vaclav Kotesovec, Feb 21 2015
MAPLE
a:=n->(n+3)/(n+2)*sum(binomial(n+k+1, k)*binomial(n-k-1, k-1)*(n+2*k)/(n+k+1), k=1..trunc(n/2)): (1, seq(a(n), n=1..30));
MATHEMATICA
Flatten[{1, Table[(n+3)/(n+2)*Sum[Binomial[n+k+1, k]*Binomial[n-k-1, k-1]*(n+2k)/(n+k+1), {k, Floor[n/2]}], {n, 20}]}] (* Vaclav Kotesovec, Feb 19 2015 *)
PROG
(PARI) a(n) = if (n==0, 1, (n+3)*sum(k=1, n\2, binomial(n+k+1, k)*binomial(n-k-1, k-1)*(n+2*k)/(n+k+1))/(n+2)); \\ Michel Marcus, Mar 03 2015
CROSSREFS
Cf. A253192.
Sequence in context: A122008 A248254 A212918 * A253192 A036254 A047170
KEYWORD
nonn,easy
AUTHOR
Michael D. Weiner, Feb 16 2015
EXTENSIONS
Definition clarified by Michael D. Weiner, Mar 09 2015
STATUS
approved