[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of L^2/Pi where L is the lemniscate constant A062539.
4

%I #46 Jul 05 2024 08:12:00

%S 2,1,8,8,4,3,9,6,1,5,2,2,6,4,7,6,6,3,8,8,3,6,7,6,9,9,4,0,7,0,4,4,6,4,

%T 5,4,3,2,5,9,3,7,2,7,2,2,8,2,5,5,6,6,7,2,2,1,1,9,2,8,6,2,1,0,5,7,9,4,

%U 5,1,9,3,8,4,4,5,9,3,2,9,4,7,7,7,1,0,3,3,1,4,9,6,7,7,5,6,0,8,6,3,1,8,0,2

%N Decimal expansion of L^2/Pi where L is the lemniscate constant A062539.

%C Brouncker gave the generalized continued fraction expansion 4/Pi = 1 + 1^2/(2 + 3^2/(2 + 5^2/(2 + ... ))). More generally, Osler shows that the continued fraction n + 1^2/(2*n + 3^2/(2*n + 5^2/(2*n + ... ))) equals a rational multiple of 4/Pi or its reciprocal when n is a positive odd integer, and equals a rational multiple of L^2/Pi or its reciprocal when n is a positive even integer.

%D O. Perron, Die Lehre von den Kettenbrüchen, Band II, Teubner, Stuttgart, 1957

%H Muniru A Asiru, <a href="/A254794/b254794.txt">Table of n, a(n) for n = 1..2000</a>

%H Peter Bala, <a href="/A096427/a096427.pdf">Notes on the constants A096427 and A224268 </a>

%H B. C. Berndt, R. L. Lamphere and B. M. Wilson, <a href="https://doi.org/10.1216/RMJ-1985-15-2-235">Chapter 12 of Ramanujan's second notebook: Continued fractions</a>, Rocky Mountain Journal of Mathematics, Volume 15, Number 2 (1985), 235-310.

%H T. J. Osler, <a href="https://www.jstor.org/stable/23248554">The missing fractions in Brouncker's sequence of continued fractions for Pi</a>, The Mathematical Gazette, 96(2012), pp. 221-225.

%F L^2/Pi = 2*( (1/4)!/(1/2)! )^4 = 9/4*( (1/4)!/(3/4)! )^2.

%F L^2/Pi = lim_{n -> oo} (4*n + 2) * Product {k = 0..n} ( (4*k - 1)/(4*k + 1) )^2

%F Generalized continued fraction: L^2/Pi = 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))). This is the particular case n = 0, x = 2 of a result of Ramanujan - see Berndt et al., Entry 25. See also Perron, p. 35.

%F The sequence of convergents to Ramanujan's continued fraction begins [2/1, 9/4, 54/25, 441/200, 4410/2025, ...]. See A254795 for the numerators and A254796 for the denominators.

%F Another continued fraction is L^2/Pi = 1 + 2/(1 + 1*3/(2 + 3*5/(2 + 5*7/(2 + 7*9/(2 + ... ))))), which can be transformed into the slowly converging series: L^2/Pi = 1 + 4 * Sum {n >= 0} P(n)^2/(4*n + 5), where P(n) = Product {k = 1..n} (4*k - 1)/(4*k + 1).

%F (L^2/Pi)^2 = 3 + 2*( 1^2/(1 + 1^2/(3 + 3^2/(1 + 3^2/(3 + 5^2/(1 + 5^2/(3 + ... )))))) ) follows by setting n = 0, x = 2 in Entry 26 of Berndt et al.

%F From _Peter Bala_, Feb 28 2019: (Start)

%F C = 2*A224268/A096427.

%F For m = 0,1,2,..., C = 4*(m + 1)*P(m)/Q(m), where P(m) = Product_{n >= 1} ( 1 - (4*m + 3)^2/(4*n + 1)^2 ) and Q(m) = Product_{n >= 0} ( 1 - (4*m + 1)^2/(4*n + 3)^2 ).

%F For m = 0,1,2,..., C = - Product_{k = 1..m} (1 - 4*k)/(1 + 4*k) * Product_{n >= 0} ( 1 - (4*m + 2)^2/(4*n + 1)^2 ) and

%F 1/C = Product_{k = 0..m} (1 + 4*k)/(1 - 4*k) * Product_{n >= 0} ( 1 - (4*m + 2)^2/(4*n + 3)^2 ).

%F C = (Pi/2) * ( Sum_{n = -oo..oo} exp(-Pi*n^2) )^4. (End)

%F Equals A133748/Pi. - _Hugo Pfoertner_, Apr 13 2024

%e 2.18843961522647663883676994070446454325937272282556672211928621....

%p #A254794

%p digits:=105:

%p 2*( GAMMA(5/4)/GAMMA(3/2) )^4:

%p evalf(%);

%t RealDigits[2*(Gamma[5/4]/Gamma[3/2])^4, 10, 110][[1]] (* _G. C. Greubel_, Mar 06 2019 *)

%o (PARI) default(realprecision, 110); 2*(gamma(5/4)/gamma(3/2))^4 \\ _G. C. Greubel_, Mar 06 2019

%o (Magma) SetDefaultRealField(RealField(110)); 2*(Gamma(5/4)/Gamma(3/2))^4; // _G. C. Greubel_, Mar 06 2019

%o (Sage) numerical_approx(2*(gamma(5/4)/gamma(3/2))^4, digits=110) # _G. C. Greubel_, Mar 06 2019

%Y Cf. A000796, A062539, A254795, A254796, A096427, A133748, A224268.

%K cons,nonn,easy

%O 1,1

%A _Peter Bala_, Feb 22 2015