[go: up one dir, main page]

login
A254436
A component sequence of A254296.
11
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 6, 3, 6, 5, 8, 7, 10, 7, 12, 9, 14, 11, 16, 14, 19, 17, 22, 20, 28, 23, 31, 26, 34, 32, 40, 35, 43, 38, 51, 46, 59, 51, 64, 61, 74, 71, 84, 76, 94, 86, 104, 96, 114, 108, 126, 120, 138, 132, 157, 146, 171
OFFSET
1,13
COMMENTS
This sequence is a component of the formula for counting A254296.
If m=ceiling(log_3(2k)), define n=(3^(m-1)+1)/2+(3^(m-2))-k for k in the range (3^(m-1)+1)/2<=k<=(3^(m-1)-1)/2+(3^(m-2)). Then this sequence gives the first 3^(m-2) terms.
FORMULA
If m=ceiling(log_3(2k)), define n=(3^(m-1)+1)/2+(3^(m-2))-k for k in the range (3^(m-1)+1)/2<=k<=(3^(m-1)-1)/2+(3^(m-2)).
Then a(n)=Sum_{d=ceiling((3k+2)/5)..(3^(m-1)-1)/2} Sum_{p=ceiling((d-1)/3..2d-k-1} A254296(p).
KEYWORD
nonn
AUTHOR
Md. Towhidul Islam, Feb 28 2015
STATUS
approved