Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Feb 15 2020 11:04:01
%S 0,1,2,3,16,85,696,6349,72080,918873,13484080,219335281,3962458248,
%T 78203547877,1680235050872,38958029188485,970681471597216,
%U 25847378934429361,732794687650764000,22032916968153975769,700360446794528578520
%N Number of rooted labeled trees on n nodes such that every nonroot node is the child of a branching node or of the root.
%C Here, a branching node is a node with at least two children.
%C In other words, a(n) is the number of labeled rooted trees on n nodes such that the path from every node towards the root reaches a branching node (or the root) in one step.
%C Also labeled rooted trees that are lone-child-avoiding except possibly for the root. The unlabeled version is A198518. - _Gus Wiseman_, Jan 22 2020
%H Vaclav Kotesovec, <a href="/A254382/b254382.txt">Table of n, a(n) for n = 0..200</a>
%H David Callan, <a href="http://arxiv.org/abs/1406.7784">A sign-reversing involution to count labeled lone-child-avoiding trees</a>, arXiv:1406.7784 [math.CO], (30-June-2014).
%H Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a>
%F E.g.f.: A(x) satisfies 1/(1 - (A(x) - x)) = B(x) where B(x) is the e.g.f. for A231797.
%F a(n) ~ (1-exp(-1))^(n-1/2) * n^(n-1). - _Vaclav Kotesovec_, Jan 30 2015
%e a(5) = 85:
%e ...0................0...............0-o...
%e ...|.............../ \............ /|\....
%e ...o..............o o...........o o o...
%e ../|\............/ \ ...................
%e .o o o..........o o ..................
%e These trees have 20 + 60 + 5 = 85 labelings.
%e From _Gus Wiseman_, Jan 22 2020: (Start)
%e The a(1) = 1 through a(4) = 16 trees (in the format root[branches]) are:
%e 1 1[2] 1[2,3] 1[2,3,4]
%e 2[1] 2[1,3] 1[2[3,4]]
%e 3[1,2] 1[3[2,4]]
%e 1[4[2,3]]
%e 2[1,3,4]
%e 2[1[3,4]]
%e 2[3[1,4]]
%e 2[4[1,3]]
%e 3[1,2,4]
%e 3[1[2,4]]
%e 3[2[1,4]]
%e 3[4[1,2]]
%e 4[1,2,3]
%e 4[1[2,3]]
%e 4[2[1,3]]
%e 4[3[1,2]]
%e (End)
%t nn = 20; b = 1 + Sum[nn = n; n! Coefficient[Series[(Exp[x] - x)^n, {x, 0, nn}], x^n]*x^n/n!, {n,1, nn}]; c = Sum[a[n] x^n/n!, {n, 0, nn}]; sol = SolveAlways[b == Series[1/(1 - (c - x)), {x, 0, nn}], x]; Flatten[Table[a[n], {n, 0, nn}] /. sol]
%t nn = 30; CoefficientList[Series[1+x-1/Sum[SeriesCoefficient[(E^x-x)^n,{x,0,n}]*x^n,{n,0,nn}],{x,0,nn}],x] * Range[0,nn]! (* _Vaclav Kotesovec_, Jan 30 2015 *)
%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]];
%t Table[Length[Select[lrt[Range[n]],FreeQ[Z@@#,_Integer[_]]&]],{n,6}] (* _Gus Wiseman_, Jan 22 2020 *)
%Y Cf. A231797, A052318 (condition is applied only to leaf nodes).
%Y The unlabeled version is A198518
%Y The non-planted case is A060356.
%Y Labeled rooted trees are A000169.
%Y Lone-child-avoiding rooted trees are A001678(n + 1).
%Y Labeled topologically series-reduced rooted trees are A060313.
%Y Labeled lone-child-avoiding unrooted trees are A108919.
%Y Cf. A000014, A000669, A001679, A005512, A291636, A331488, A331578.
%K nonn
%O 0,3
%A _Geoffrey Critzer_, Jan 29 2015