[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254006
a(0) = 1, a(n) = 3*a(n-2) if n mod 2 = 0, otherwise a(n) = 0.
9
1, 0, 3, 0, 9, 0, 27, 0, 81, 0, 243, 0, 729, 0, 2187, 0, 6561, 0, 19683, 0, 59049, 0, 177147, 0, 531441, 0, 1594323, 0, 4782969, 0, 14348907, 0, 43046721, 0, 129140163, 0, 387420489, 0, 1162261467, 0, 3486784401, 0, 10460353203, 0, 31381059609, 0, 94143178827
OFFSET
0,3
COMMENTS
Inspired by the Lévy C-curve, and generated using different construction rules as shown in the links.
The length of this variant Lévy C-curve is an integer in the real quadratic number field Q(sqrt(3)), namely L(n) = A(n) + B(n)*sqrt(3) with A(n) = a(n) and B(n) = a(n-1), with a(0) = 1. See the construction rule and the illustration in the links.
Powers of 3 interspersed with zeros. - Colin Barker, Jan 26 2015
FORMULA
a(n) = 3*a(n-2) if n mod 2 = 0, otherwise a(n) = 0, a(0) = 1.
a(n) = (3^(n/2)*(1+(-1)^n))/2. - Colin Barker, Jan 26 2015
G.f.: -1 / (3*x^2-1). - Colin Barker, Jan 26 2015
MATHEMATICA
nxt[{n_, a_, b_}]:={n+1, b, If[OddQ[n], 3a, 0]}; Transpose[NestList[nxt, {1, 1, 0}, 50]][[2]] (* or *) With[{nn=25}, Riffle[3^Range[0, nn], 0]] (* Harvey P. Dale, Nov 30 2015 *)
PROG
(PARI)
{
a=1; print1(a, ", ");
for (n=1, 100,
if (Mod(n, 2)==0,
a=a*3;
print1(a, ", "),
print1(0, ", ")
)
)
}
(PARI)
Vec(-1/(3*x^2-1) + O(x^100)) \\ Colin Barker, Jan 26 2015
CROSSREFS
Sequence in context: A164597 A167295 A079442 * A321329 A016645 A217764
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Jan 26 2015
STATUS
approved