[go: up one dir, main page]

login
A243457
Primes p such that (p reversed)-2 is also a prime.
6
5, 7, 13, 19, 31, 37, 127, 139, 151, 163, 181, 193, 307, 313, 331, 349, 367, 379, 547, 571, 577, 991, 997, 1009, 1033, 1051, 1117, 1123, 1129, 1171, 1201, 1213, 1231, 1249, 1279, 1297, 1321, 1327, 1399, 1429, 1453, 1459, 1489, 1543, 1567, 1579, 1597, 1609
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime[Range[2, 5000]], PrimeQ[FromDigits[Reverse[IntegerDigits[#]]] - 2] &]
PROG
(Magma) [p: p in PrimesInInterval(2, 2000) | IsPrime(q-2) where q is Seqint(Reverse(Intseq(p)))];
CROSSREFS
Cf. Primes p such that (p reversed)-k is also a prime: A167216 (k=1), this sequence (k=2), A243458 (k=3), A167513 (k=4), A243459 (k=5), A167488 (k=6), A243460 (k=7), A167497 (k=8), A243461 (k=9), A167496 (k=10).
Sequence in context: A167464 A280266 A370008 * A189441 A106986 A218011
KEYWORD
nonn,base
AUTHOR
Vincenzo Librandi, Jun 05 2014
STATUS
approved