[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241495
Least number k not divisible by 10 such that k^n contains n zeros.
0
101, 101, 101, 101, 101, 351, 1244, 194, 4648, 951, 4357, 3757, 2169, 2392, 7399, 7501, 9723, 8683, 13867, 6152, 15204, 18898, 40141, 54631, 29647, 35586, 46564, 67743, 84789, 119421, 43055, 43642, 83055, 44411, 142553, 94501, 135852, 52299, 174062, 121201, 196205
OFFSET
1,1
EXAMPLE
101 is not divisible by 10 and 101^1 (101), 101^2 (10201), 101^3 (1030301), 101^4 (104060401), and 101^5 (10510100501) all have 1, 2, 3, 4, and 5 zeros, respectively. So, a(1) = a(2) = a(3) = a(4) = a(5) = 101.
PROG
(Python)
def Cu(n):
..for k in range(10**10):
....if k% 10 != 0:
......if str(k**n).count("0") == n:
........return k
n = 1
while n < 100:
..print(Cu(n))
..n += 1
(PARI) a(n) = {k = 1; while (((k % 10) == 0) || (d = digits(k^n)) && (sum(i=1, #d, d[i] == 0) != n), k++); k; } \\ Michel Marcus, Apr 30 2014
CROSSREFS
Cf. A233821.
Sequence in context: A282200 A266667 A368397 * A282980 A282950 A283087
KEYWORD
nonn,base
AUTHOR
Derek Orr, Apr 24 2014
STATUS
approved