[go: up one dir, main page]

login
A241273
Number of partitions p of n into distinct parts such that max(p) = 6*min(p).
4
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 4, 2, 3, 3, 5, 5, 6, 8, 8, 9, 10, 13, 14, 16, 18, 20, 20, 24, 25, 28, 31, 36, 37, 40, 42, 46, 51, 55, 62, 65, 72, 76, 83, 89, 98, 107, 117, 126, 139, 149, 163, 177, 195, 208, 226, 247, 267, 291
OFFSET
0,13
EXAMPLE
a(14) counts these 3 partitions: {12,2}, {6,5,2,1}, {6,4,3,1}.
MATHEMATICA
z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
Table[Count[f[n], p_ /; Max[p] == 2*Min[p]], {n, 0, z}] (* A241035 *)
Table[Count[f[n], p_ /; Max[p] == 3*Min[p]], {n, 0, z}] (* A241063 *)
Table[Count[f[n], p_ /; Max[p] == 4*Min[p]], {n, 0, z}] (* A241069 *)
Table[Count[f[n], p_ /; Max[p] == 5*Min[p]], {n, 0, z}] (* A241272 *)
Table[Count[f[n], p_ /; Max[p] == 6*Min[p]], {n, 0, z}] (* A241273 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 18 2014
STATUS
approved