[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240993
A000142 (n+1) * A002109(n), a product of factorials and hyperfactorials.
5
1, 2, 24, 2592, 3317760, 62208000000, 20316635136000000, 133852981198454784000000, 20211123400293732996612096000000, 78302033109811407811828935756349440000000, 8613223642079254859301182933198438400000000000000000
OFFSET
0,2
COMMENTS
a(n+1) / a(n) = A055897(n+2);
row products of the triangle A245334.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..36
FORMULA
a(n) ~ A * sqrt(2*Pi) * n^(n^2/2+3*n/2+19/12) / exp(n*(n+4)/4), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 14 2014
MATHEMATICA
Table[(n+1)!*Hyperfactorial[n], {n, 0, 10}] (* Vaclav Kotesovec, Nov 14 2014 *)
Table[(n+1)*(n!)^(n+1)/BarnesG[n+1], {n, 0, 10}] (* Vaclav Kotesovec, Nov 14 2014 *)
PROG
(Haskell)
a240993 n = a000142 (n + 1) * a002109 n
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 31 2014
STATUS
approved