[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248701
Smallest prime such that the preceding n prime gaps are increasing and the following n prime gaps are decreasing.
4
3, 7, 359, 7853, 96401, 2812099, 294276293
OFFSET
1,1
EXAMPLE
a(3)=359; [347, 349, 353, 359, 367, 373, 379]; prime gaps [2, 4, 6, 8, 6, 6] which are monotonically increasing 2 <= 4 <= 6 and decreasing 8 >= 6 >=6.
MAPLE
A248701 := proc(n)
local glist, p, wrks, s ;
if n = 0 then
return ;
else
s := n+1 ;
p := ithprime(s) ;
glist := [seq(ithprime(i+1)-ithprime(i), i=1..2*n)] ;
while true do
wrks := true;
for i from 1 to n-1 do
if glist[i] > glist[i+1] then
wrks := false;
break;
end if;
end do:
for i from n+1 to 2*n-1 do
if glist[i] < glist[i+1] then
wrks := false;
break;
end if;
end do:
if wrks then
return p;
end if;
p := nextprime(p) ;
s := s+1 ;
glist := subsop(1=NULL, glist) ;
glist := [op(glist), ithprime(s+n)-ithprime(s+n-1)] ;
end do:
end if;
end proc: # R. J. Mathar, Dec 17 2014
PROG
(PARI) isoka(i, n, vgp) = {for (k=0, n-2, if (vgp[i-k-1] > vgp[i-k], return(0)); if (vgp[i+k+1] < vgp[i+k+2], return(0)); ); return(1); }
a(n) = {nb = 10000; pa = prime(1); pb = prime(nb); vp = primes([pa, pb]); nbp = #vp; vgp = vector(nbp-1, k, vp[k+1] - vp[k]); ok = 0; while (!ok, for (i=1+n, nbp-n-1, if (isoka(i-1, n, vgp), ok = vp[i]; break); ); if (! ok, pa = prime(primepi(pb)-nb+n+1); pb = prime(primepi(pa)+nb); vp = primes([pa, pb]); nbp = #vp; vgp = vector(nbp-1, k, vp[k+1] - vp[k]); ); ); return (ok); } \\ Michel Marcus, Oct 17 2014
CROSSREFS
Sequence in context: A064774 A348376 A089689 * A103317 A104051 A128004
KEYWORD
nonn,more
AUTHOR
Abhiram R Devesh, Oct 12 2014
STATUS
approved