OFFSET
0,2
COMMENTS
LINKS
FORMULA
a(n) = 3^n*S(n, 34/3) with Chebyshev's S polynomial (for S see the coefficient triangle A049310).
O.g.f.: 1/(1 - 34*x + (3*x)^2).
a(n) = 34*a(n-1) - 9*a(n-2), a(-1) = 0, a(0) = 1 .
E.g.f.: exp(17*x)*(140*cosh(2*sqrt(70)*x) + 17*sqrt(70)*sinh(2*sqrt(70)*x))/140. - Stefano Spezia, Mar 24 2023
MATHEMATICA
CoefficientList[Series[1 / (1 - 34 x + (3 x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 08 2014 *)
PROG
(Magma) I:=[1, 34]; [n le 2 select I[n] else 34*Self(n-1) - 9*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 07 2014
EXTENSIONS
a(16)-a(17) from Stefano Spezia, Mar 24 2023
STATUS
approved