OFFSET
7,1
COMMENTS
Conjecture: a(n) exists for any n > 6. - Zhi-Wei Sun, Sep 29 2014
Numbers n for which a(n) > n: 10, 12, 22, 26, 42, 78, 166, 266, 290. The next term in this mini-sequence, if it exists, is greater than 3*10^4. I conjecture this list is finite. - Derek Orr, Sep 29 2014
a(2^n) <= 2^n for all n > 2. Also, if a(i) = j, then a(j) <= i. - Derek Orr, Sep 29 2014
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 7..10000
EXAMPLE
a(10) = 14 since 10 + 14 divides phi(10)*phi(14) = 4*6 = 24.
MATHEMATICA
Do[m=1; Label[aa]; If[Mod[EulerPhi[m]*EulerPhi[n], m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 7, 70}]
PROG
(PARI)
a(n)=m=1; while((eulerphi(m)*eulerphi(n))%(m+n), m++); m
vector(100, n, a(n+6)) \\ Derek Orr, Sep 29 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 29 2014
STATUS
approved