[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247845
Primes, p, that generate the prime quadruplets, p^2-2p+2k (for k = -2, -1, 1, 2).
2
5, 62417, 178817, 261017, 419147, 433787, 505607, 876107, 1183337, 1374377, 1620917, 1976987, 3619607, 4146377, 5260487, 5622047, 6399677, 7166147, 7213847, 7743647, 8055167, 10615967, 13277717, 14042117, 14080277, 15331397, 17433407, 17889587, 17963867
OFFSET
1,1
COMMENTS
Except for a(1), all other terms in the sequence end in 7.
For a similar list not restricted to primes, see A247882.
EXAMPLE
5 is in the sequence as it generates the prime quadruplet 5^2-2*5-4=11; 5^2-2*5-2=13; 5^2-2*5+2=17; and, 5^2-2*5+4=19.
PROG
(PARI) lista(nn) = {vk = [-2, -1, 1, 2]; forprime (p=2, nn, nb = 0; for (k=1, 4, nb += isprime(p^2-2*p+2*vk[k]); ); if (nb == 4, print1(p, ", ")); ); } \\ Michel Marcus, Sep 26 2014
(Magma) [p: p in PrimesUpTo(10^7) |IsPrime(p^2-2*p-4) and IsPrime(p^2-2*p-2)and IsPrime(p^2-2*p+2)and IsPrime(p^2-2*p+4)]; // Vincenzo Librandi, Oct 14 2014
CROSSREFS
Cf. A247846 (lesser of prime quadruplets), A247882 (similar but not restricted to primes).
Sequence in context: A356762 A242833 A242478 * A050816 A171981 A145232
KEYWORD
nonn
AUTHOR
Ray G. Opao, Sep 25 2014
EXTENSIONS
More terms from Michel Marcus, Oct 10 2014
STATUS
approved