[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247540
a(n) = 2*a(n-1) - 3*a(n-1)^2 / a(n-2), with a(0) = a(1) = 1.
1
1, 1, -1, -5, 65, 2665, -322465, -117699725, 128645799425, 422086867913425, -4153756867136015425, -122639671502190855423125, 10862563623963550637392450625, 2886411268723218638918559372525625, -2300934493386669693418957707961899750625
OFFSET
0,4
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..60
FORMULA
0 = a(n)*(-2*a(n+1) + a(n+2)) + a(n+1)*(+3*a(n+1)) for all n in Z.
a(n+1) = a(n) * (-1)^n * A046717(n) for all n in Z.
a(1-n) = (-3)^(n*(n-1)/2) / a(n) for all n in Z.
MATHEMATICA
RecurrenceTable[{a[n] == 2*a[n-1] - 3*a[n-1]^2/a[n-2], a[0]==1, a[1]==1}, a, {n, 0, 30}] (* G. C. Greubel, Aug 04 2018 *)
PROG
(PARI) {a(n) = if( n<0, 1 / prod(k=1, -n, (1 + (-3)^-k) / 2), prod(k=0, n-1, (1 + (-3)^k) / 2))};
(Haskell)
a247540 n = a247540_list !! n
a247540_list = 1 : 1 : zipWith (-)
(map (* 2) xs) (zipWith div (map ((* 3) . (^ 2)) xs) a247540_list)
where xs = tail a247540_list
-- Reinhard Zumkeller, Sep 20 2014
(Magma) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1) - 3*Self(n-1)^2/Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 04 2018
CROSSREFS
Cf. A046717.
Sequence in context: A195196 A012635 A196975 * A171800 A195244 A162080
KEYWORD
sign
AUTHOR
Michael Somos, Sep 18 2014
STATUS
approved