[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246138
a(n) = (Sum_{k=0..n-1} A246065(k)) / n^2.
8
-1, 0, 1, 3, 9, 32, 135, 648, 3409, 19176, 113535, 700125, 4463415, 29256120, 196334697, 1344542787, 9371335905, 66335058128, 476022873279, 3457886816997, 25394948961831, 188353304179920, 1409578821465129, 10635308054118792, 80845157085234975
OFFSET
1,4
COMMENTS
Part (ii) of the conjecture in A246065 implies that all the terms in the current sequence are integers.
Conjecture: The sequence a(n+1)/a(n) (n = 4,5,...) is strictly increasing to the limit 9, and the sequence a(n+1)^(1/(n+1))/a(n)^(1/n) (n = 3,4,...) is strictly decreasing to the limit 1.
LINKS
FORMULA
Recurrence: n^2*a(n) = 2*(n-2)*(5*n-8)*a(n-1) - 9*(n-2)^2*a(n-2). - Vaclav Kotesovec, Aug 27 2014
a(n) ~ 3^(2*n+5/2) / (128*Pi*n^4). - Vaclav Kotesovec, Aug 27 2014
a(n) = ((3*n+2)*(3*n-2)*A005802(n-1) - (n+2)^2*A005802(n))/4. - Mark van Hoeij, Nov 06 2023
EXAMPLE
a(5) = 9 since sum_{k=0}^{5-1}A246065(k) = -1 + 1 + 9 + 39 + 177 = 225 = 5^2*9.
MAPLE
ogf := (1-((9*x-1)/(x-1))^(3/4)*hypergeom([-1/4, 3/4], [1], -64*x/(9*x-1)^3/(x-1)))/6;
series(ogf, x=0, 25); # Mark van Hoeij, Nov 12 2023
MATHEMATICA
s[n_]:=Sum[Binomial[n, k]^2*Binomial[2k, k]/(2k-1), {k, 0, n}]
a[n_]:=Sum[s[k], {k, 0, n-1}]/n^2
Table[a[n], {n, 1, 25}]
CROSSREFS
Sequence in context: A194530 A324238 A005964 * A129416 A210689 A334642
KEYWORD
sign
AUTHOR
Zhi-Wei Sun, Aug 25 2014
STATUS
approved