OFFSET
1,2
COMMENTS
For e > 3, unlike the cases e=1,2,3, the numbers binomial(2n, n) - 2 mod n^e are not necessarily 0 for any n>1, be it prime or composite (see A246130 for introductory comments). Testing up to n=278000, the only number n>1 for which a(n)=0 is the first Wolstenholme prime 16843 (A088164), but no composite.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..10000
R. J. McIntosh, On the converse of Wolstenholme's theorem, Acta Arithmetica 71 (4): 381-389, (1995)
Wikipedia, Wolstenholme's theorem
EXAMPLE
a(7) = (binomial(14,7)-2) mod 7^4 = (3432-2) mod 2401 = 1029.
PROG
(PARI) a(n) = (binomial(2*n, n)-2)%n^4
CROSSREFS
KEYWORD
nonn
AUTHOR
Stanislav Sykora, Aug 16 2014
STATUS
approved