[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245874
Number of length 5+2 0..n arrays with some pair in every consecutive three terms totalling exactly n.
1
42, 553, 1764, 4753, 9726, 18505, 31176, 50401, 76050, 111721, 156972, 216433, 289254, 381193, 490896, 625345, 782586, 970921, 1187700, 1442641, 1732302, 2067913, 2445144, 2876833, 3357666, 3902185, 4503996, 5179441, 5920950, 6746761
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) -2*a(n-7) + a(n-8).
Conjectures from Colin Barker, Nov 04 2018: (Start)
G.f.: x*(42 + 469*x + 574*x^2 + 371*x^3 + 10*x^4 - 121*x^5 - 2*x^6 + x^7) / ((1 - x)^5*(1 + x)^3).
a(n) = 1 + 12*n + 26*n^2 + 39*n^3 + 7*n^4 for n even.
a(n) = -9 - 18*n + 23*n^2 + 39*n^3 + 7*n^4 for n odd.
(End)
EXAMPLE
Some solutions for n=10:
..9....4...10....8....2....8....7....8....7....7....6....9....3....2....5....0
..0....6....0....2....6....4....1....4....0....4....4....7....7....1....5....4
.10....6...10....3....4....6....9....2...10....6....6....3....3....9....5...10
..0....4....7....7....6....1....3....8....3....8....4....7....4...10....6....0
..5....0....3....8....4....9....7...10....7....2...10....5....7....1....4....4
.10...10....9....2....6....1....7....0...10....8....0....5....3....9....6....6
..0....5....1....6....7....3....3....9....0....8....8....2....2....2....8....8
CROSSREFS
Row 5 of A245869.
Sequence in context: A196671 A248448 A248449 * A293096 A279888 A104901
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 04 2014
STATUS
approved