[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245867
Number of length n+2 0..6 arrays with some pair in every consecutive three terms totalling exactly 6.
1
127, 493, 1579, 5515, 18505, 63241, 214315, 729097, 2475985, 8415217, 28590415, 97151683, 330100459, 1121650903, 3811203385, 12950003383, 44002376953, 149514426895, 508030458319, 1726221621517, 5865476355769, 19930126601527
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3) - 9*a(n-4) - 24*a(n-5) + 5*a(n-6).
Empirical g.f.: x*(127 + 112*x - 281*x^2 - 574*x^3 - 1141*x^4 + 245*x^5) / (1 - 3*x - 3*x^2 + x^3 + 9*x^4 + 24*x^5 - 5*x^6). - Colin Barker, Nov 04 2018
EXAMPLE
Some solutions for n=6:
..4....2....1....2....2....5....6....1....2....4....3....4....3....4....6....0
..4....0....1....6....6....4....4....6....1....4....3....2....6....6....0....6
..2....6....5....4....0....1....0....5....5....2....3....3....0....2....1....4
..2....5....2....2....4....5....6....1....1....3....0....3....6....4....5....2
..4....1....1....4....2....1....3....5....1....3....6....6....2....3....1....6
..3....4....4....5....3....2....3....6....5....3....0....0....4....2....5....0
..3....2....5....1....3....5....4....0....0....0....2....2....6....4....1....4
..3....3....2....5....6....1....2....5....1....6....6....6....0....0....4....6
CROSSREFS
Column 6 of A245869.
Sequence in context: A057814 A038646 A340537 * A096523 A299132 A142736
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 04 2014
STATUS
approved