[go: up one dir, main page]

login
A245292
Decimal expansion of 'mu', an isoperimetric constant associated with the study of a vibrating, homogeneous plate clamped at the boundary of the unit disk.
2
0, 0, 9, 5, 8, 1, 9, 3, 0, 2, 6, 7, 8, 3, 9, 3, 1, 7, 5, 4, 9, 0, 2, 3, 2, 9, 3, 2, 1, 0, 7, 7, 8, 4, 3, 8, 7, 5, 8, 6, 9, 4, 4, 9, 5, 2, 9, 7, 3, 8, 5, 5, 1, 6, 1, 5, 7, 1, 3, 5, 2, 1, 6, 9, 3, 5, 8, 2, 0, 7, 3, 6, 1, 0, 2, 0, 2, 6, 7, 8, 4, 9, 1, 1, 2, 8, 8, 1, 7, 9, 0, 6, 6, 8, 7, 9, 5, 0, 8, 3, 7
OFFSET
0,3
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric constants, p. 222.
FORMULA
mu = 1 / theta^4, where theta is the smallest positive root of I1(t)*J0(t) + I0(t)*J1(t) = 0, with I0, I1, J0, J1, Bessel functions.
EXAMPLE
0.0095819302678393175490232932107784387586944952973855161571352169358207361...
MATHEMATICA
theta = t /. FindRoot[BesselJ[0, t]*BesselI[1, t] + BesselI[0, t]*BesselJ[1, t] == 0, {t, 3}, WorkingPrecision -> 100]; mu = 1/theta^4; Join[{0, 0}, RealDigits[mu] // First]
CROSSREFS
Cf. A242402(theta).
Sequence in context: A117019 A155692 A011203 * A203081 A346440 A329715
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved