[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245265
E.g.f. satisfies: A(x) = exp(x/(1-x*A(x)^4)).
5
1, 1, 3, 37, 649, 15461, 471571, 17456041, 760880625, 38178439849, 2167446089251, 137359883836781, 9612722107574521, 736277501363180557, 61265207586681046131, 5503291392884323494961, 530778414439201798454881, 54706967800114521799571921, 6000952913613549583603208515
OFFSET
0,3
COMMENTS
Generally, if e.g.f. satisfies: A(x) = exp(x/(1-x*A(x)^p)), p>=1, then
r = 4*LambertW(sqrt(p)/2)^2 / (p*(1+2*LambertW(sqrt(p)/2))),
A(r) = (sqrt(p)/(2*LambertW(sqrt(p)/2)))^(2/p),
a(n) ~ p^(n-1+1/p) * (1+2*LambertW(sqrt(p)/2))^(n+1/2) * n^(n-1) / (sqrt(1+LambertW(sqrt(p)/2)) * exp(n) * 2^(2*n+2/p) * LambertW(sqrt(p)/2)^(2*n+2/p-1/2)).
FORMULA
a(n) = Sum_{k=0..n} n! * (1 + 4*(n-k))^(k-1)/k! * C(n-1,n-k).
a(n) ~ n^(n-1) * (1+2*LambertW(1))^(n+1/2) / (exp(n) * (LambertW(1))^(2*n) * (4*sqrt(1+LambertW(1)))). - Vaclav Kotesovec, Jul 15 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 37*x^3/3! + 649*x^4/4! + 15461*x^5/5! + 471571*x^6/6! + ...
MATHEMATICA
Table[Sum[n! * (1 + 4*(n-k))^(k-1)/k! * Binomial[n-1, n-k], {k, 0, n}], {n, 0, 20}]
PROG
(PARI) for(n=0, 30, print1(sum(k=0, n, n!*(1 + 4*(n-k))^(k-1)/k!*binomial(n-1, n-k)), ", ")) \\ G. C. Greubel, Nov 17 2017
CROSSREFS
Cf. A161630 (p=1), A212722 (p=2), A212917 (p=3).
Cf. A030178.
Cf. A366234 (log).
Sequence in context: A362724 A333385 A331114 * A362672 A143639 A143412
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jul 15 2014
STATUS
approved