[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245089
The unique integer r with |r| < prime(n)/2 such that B_{prime(n)-2}(1/3) == r (mod prime(n)), where B_m(x) denotes the Bernoulli polynomial of degree m.
6
-2, -1, 4, -6, 8, -6, -10, -5, 3, -16, 4, 6, 3, 6, -11, -29, 2, 7, 21, 4, -16, -23, -5, 43, 14, 3, -32, 26, 13, -23, 64, 52, -30, -74, -17, -33, 37, -82, -68, 55, -78, 96, 79, 22, -81, -26, -7, 70, -38, 9, 3, -118, 128, -123, -67, -69, -78, -138, 30, -60, -19, 88, -26, 110, 27, 63, -82, 138
OFFSET
3,1
COMMENTS
Conjecture: a(n) = 0 infinitely often. In other words, there are infinitely many primes p > 3 such that B_{p-2}(1/3) == 0 (mod p).
This seems reasonable in view of the standard heuristic arguments. Our computation shows that if a(n) = 0 then n > 2600 and hence prime(n) > 23000.
Zhi-Wei Sun made many conjectures on congruences involving B_{p-2}(1/3), see the Sci. China Math. paper and arXiv:1407.0967.
The first value of n with a(n) = 0 is 18392. For the prime p = prime(18392) = 205129, we have B_{p-2}(1/3) == 20060*p (mod p^2). - Zhi-Wei Sun, Dec 13 2014
LINKS
Guo-Shuai Mao and Zhi-Wei Sun, Two congruences involving harmonic numbers with applications, arXiv:1412.0523 [math.NT], 2014.
Zhi-Wei Sun, Super congruences and Euler numbers, Sci. China Math. 54(2011), 2509-2535.
Zhi-Wei Sun, Congruences involving g_n(x) = sum_{k=0}^n C(n,k)^2*C(2k,k)*x^k, arXiv:1407.0967 [math.NT], 2014.
EXAMPLE
a(3) = -2 since B_{prime(3)-2}(1/3) = B_3(1/3) = 1/27 == -2 (mod prime(3)=5).
MATHEMATICA
rMod[m_, n_]:=Mod[Numerator[m]*PowerMod[Denominator[m], -1, n], n, -n/2]
a[n_]:=rMod[BernoulliB[Prime[n]-2, 1/3], Prime[n]]
Table[a[n], {n, 3, 70}]
CROSSREFS
Sequence in context: A378342 A262599 A160016 * A335919 A296340 A048213
KEYWORD
sign
AUTHOR
Zhi-Wei Sun, Jul 11 2014
STATUS
approved