[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245073
Decimal expansion of Integral_{x=0..Pi/2} (x^2/sin(x)) dx.
3
1, 5, 4, 7, 9, 8, 2, 4, 0, 2, 1, 5, 7, 7, 4, 2, 3, 0, 4, 6, 5, 6, 0, 7, 6, 7, 6, 7, 7, 5, 3, 0, 2, 0, 6, 3, 2, 5, 5, 2, 2, 5, 6, 7, 7, 6, 9, 1, 3, 6, 1, 2, 0, 6, 5, 2, 5, 1, 4, 4, 1, 1, 6, 0, 6, 1, 3, 2, 8, 9, 1, 5, 8, 5, 3, 1, 4, 8, 6, 0, 6, 9, 3, 5, 5, 1, 1, 7, 0, 7, 2, 8, 2, 9, 3, 8, 1, 2, 5, 8, 5, 4, 5, 2, 8
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.7 Catalan's Constant, pp. 55, 57.
LINKS
Eric Weisstein's MathWorld, Apery's Constant.
Eric Weisstein's MathWorld, Catalan's Constant.
FORMULA
Equals 2*Pi*G - 7*zeta(3)/2, where G is Catalan's constant.
Also equals 4 * Integral_{x=0..1} (arctan(x)^2/x) dx.
From Stefano Spezia, Nov 13 2024: (Start)
Equals Sum_{k>=0} 2^(4*k)/((k + 1)*(2*k + 1)^2*binomial(2*k,k)^2) (see Finch at p. 55).
Equals hypergeom([1, 1, 1, 1], [3/2, 3/2, 2], 1]. (End)
EXAMPLE
1.547982402157742304656076767753020632552256776913612065251441160613289...
MATHEMATICA
RealDigits[2*Pi*Catalan - 7*Zeta[3]/2, 10, 105] // First
RealDigits[HypergeometricPFQ[{1, 1, 1, 1}, {3/2, 3/2, 2}, 1], 10, 100][[1]] (* Stefano Spezia, Nov 13 2024 *)
PROG
(PARI) default(realprecision, 100); 2*Pi*Catalan - 7*zeta(3)/2 \\ G. C. Greubel, Aug 24 2018
(Magma) SetDefaultRealField(RealField(100)); R:=RealField(); L:=RiemannZeta(); 2*Pi(R)*Catalan(R) - 7*Evaluate(L, 3)/2; // G. C. Greubel, Aug 24 2018
CROSSREFS
Sequence in context: A340705 A252666 A378823 * A021650 A141269 A136118
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved