[go: up one dir, main page]

login
A244813
The hexagonal spiral of Champernowne, read along the West (or 270-degree) ray.
11
1, 5, 2, 0, 1, 5, 2, 2, 3, 1, 4, 1, 1, 1, 7, 2, 9, 1, 3, 0, 3, 4, 2, 3, 6, 7, 1, 7, 3, 7, 9, 0, 3, 2, 1, 2, 8, 3, 3, 4, 7, 8, 6, 6, 0, 7, 8, 9, 7, 0, 1, 2, 8, 7, 4, 5, 3, 8, 8, 9, 2, 3, 1, 2, 5, 2, 5, 6, 2, 5, 9, 0, 3, 2, 4, 5, 8, 3, 8, 9, 7, 8, 3, 4, 0, 7, 8, 9, 7, 0, 3, 5, 8, 7, 9, 0, 3, 8, 5, 6, 2, 3, 1, 2, 5
OFFSET
1,2
FORMULA
(3n^2 - 5n + 3)th almost natural number (A033307), Also see formula section of A056105.
EXAMPLE
see A244807 example section for its diagram.
MATHEMATICA
almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; f[n_] := 3n^2 - 5n + 3 (* see formula section of A244807 *); Array[ almostNatural[ f@#, 10] &, 105]
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Jul 06 2014
STATUS
approved