Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 14 2019 17:30:46
%S 1,2,3,4,101,202,252,303,404,505,606,707,808,909,1001,2002,3003,4004,
%T 5005,6006,7007,8008,9009,10001,10101,10201,10301,10401,10501,10601,
%U 10701,10801,10901,11011,12021,13031,14041,15051,15451,16061,17071,18081,19091,20002,20102,20202
%N Palindromes n such that n +/- the product of digits of n are both palindromes.
%C These are the palindromes in A244541.
%C All palindromes with a zero will be in this sequence.
%C The palindromes that do not contain a zero but do satisfy the definition begin 1, 2, 3, 4, 252, 15451, 25152, 25252, 25352, 25452, 36563, 51415, 52125, 52225, 52325, 52425, 63536, 92529, 1455541, 1545451, 1954591 . . . - _Harvey P. Dale_, May 14 2019
%e 101 - 1*0*1 and 101 + 1*0*1 are both palindromes (still 101). So 101 is a member of this sequence.
%o (PARI) rev(n)={r="";for(i=1,#digits(n),r=concat(Str(digits(n)[i]),r));return(eval(r))}
%o for(n=1,10^5,if(rev(n)==n,dig=digits(n);p=prod(k=1,#dig,dig[k]);mi=n-p;ma=n+p;if(rev(mi)==mi&&rev(ma)==ma,print1(n,", "))))
%Y Cf. A007954, A244541.
%K nonn,base
%O 1,2
%A _Derek Orr_, Jun 29 2014