[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231610
The least k such that the Collatz (3x+1) iteration of k contains 2^n as the largest power of 2.
1
1, 2, 4, 8, 3, 32, 21, 128, 75, 512, 151, 2048, 1365, 8192, 5461, 32768, 14563, 131072, 87381, 524288, 184111, 2097152, 932067, 8388608, 5592405, 33554432, 13256071, 134217728, 26512143, 536870912, 357913941, 2147483648, 1431655765, 8589934592, 3817748707
OFFSET
0,2
COMMENTS
Very similar to A225124, where 2^n is the largest number in the Collatz iteration of A225124(n). The only difference appears to be a(8), which is 75 here and 85 in A225124. The Collatz iteration of 75 is {75, 226, 113, 340, 170, 85, 256, 128, 64, 32, 16, 8, 4, 2, 1}.
FORMULA
a(n) = 2^n for odd n.
EXAMPLE
The iteration for 21 is {21, 64, 32, 16, 8, 4, 2, 1}, which shows that 64 = 2^6 is a term. However, 32 is not the first power of two. We have to wait until the iteration for 32, which is {32, 16, 8, 4, 2, 1}, to see 32 = 2^5 as the first power of two.
MATHEMATICA
Collatz[n_?OddQ] := 3*n + 1; Collatz[n_?EvenQ] := n/2; nn = 21; t = Table[-1, {nn}]; n = 0; cnt = 0; While[cnt < nn, n++; q = Log[2, NestWhile[Collatz, n, Not[IntegerQ[Log[2, #]]] &]]; If[q < nn && t[[q + 1]] == -1, t[[q + 1]] = n; cnt++]]; t
CROSSREFS
Cf. A010120, A054646 (similar sequences).
Cf. A135282, A232503 (largest power of 2 in the Collatz iteration of n).
Cf. A225124.
Sequence in context: A341811 A332306 A223699 * A225124 A344537 A349104
KEYWORD
nonn
AUTHOR
T. D. Noe, Dec 02 2013
STATUS
approved