[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231382
T(n,k)=Number of nXk 0..1 arrays with no element less than a strict majority of its horizontal and vertical neighbors
8
2, 2, 2, 4, 10, 4, 7, 21, 21, 7, 12, 48, 93, 48, 12, 21, 113, 378, 378, 113, 21, 37, 261, 1519, 2539, 1519, 261, 37, 65, 601, 6126, 17363, 17363, 6126, 601, 65, 114, 1390, 24747, 120124, 209118, 120124, 24747, 1390, 114, 200, 3216, 99964, 830890, 2547810
OFFSET
1,1
COMMENTS
Table starts
...2....2.......4.........7..........12.............21...............37
...2...10......21........48.........113............261..............601
...4...21......93.......378........1519...........6126............24747
...7...48.....378......2539.......17363.........120124...........830890
..12..113....1519.....17363......209118........2547810.........30936914
..21..261....6126....120124.....2547810.......54485279.......1157805351
..37..601...24747....830890....30936914.....1157805351......42978519280
..65.1390...99964...5746499...375620622....24615811883....1597438228604
.114.3216..403743..39745115..4560995236...523548909308...59402875813957
.200.7435.1630662.274872588.55375119088.11133382117666.2208383979206654
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3) for n>4
k=2: a(n) = 3*a(n-1) -2*a(n-2) +2*a(n-3) -2*a(n-4) -a(n-5) for n>6
k=3: [order 10] for n>11
k=4: [order 19] for n>20
k=5: [order 46] for n>47
EXAMPLE
Some solutions for n=3 k=4
..1..0..0..0....0..0..0..1....1..0..0..0....1..0..0..0....0..1..1..0
..0..0..1..1....1..1..0..0....0..0..1..1....0..0..1..0....0..0..0..0
..0..0..0..0....1..1..0..0....0..0..1..1....0..0..1..0....0..0..1..1
CROSSREFS
Column 1 is A005251(n+2)
Sequence in context: A153986 A199889 A293177 * A360314 A213270 A307522
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 08 2013
STATUS
approved