[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230045
Palindromic primes with strictly increasing sum of digits.
1
2, 3, 5, 7, 181, 191, 373, 383, 727, 757, 787, 797, 17971, 19891, 19991, 76667, 77977, 78887, 79997, 1987891, 1988891, 1998991, 3799973, 3899983, 3998993, 7897987, 7996997, 9888889, 9889889, 9989899, 199999991, 768989867, 779969977, 779999977, 798989897
OFFSET
1,1
COMMENTS
a(1)=2; a(n+1) is the smallest palindromic prime with sum of digits > sum of digits of a(n).
LINKS
Shyam Sunder Gupta, Table of n, a(n) for n = 1..63
EXAMPLE
a(6) = 191, sum of digits is 11; a(7) = 373, sum of digits is 13 and 13 > 11.
MATHEMATICA
a = {}; t = 0; Do[z = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z], s = Apply[Plus, IntegerDigits[z]]; If[s > t, t = s; AppendTo[a, z]]], {n, 10^5}]; a
CROSSREFS
Sequence in context: A064155 A230047 A230042 * A069803 A083184 A046478
KEYWORD
nonn,base
AUTHOR
Shyam Sunder Gupta, Oct 06 2013
STATUS
approved