Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Feb 25 2020 12:13:43
%S 1,1,1,4,2,1,25,9,3,1,217,58,15,4,1,2470,500,100,22,5,1,35647,5574,
%T 861,152,30,6,1,637129,78595,9435,1313,215,39,7,1,13843948,1376162,
%U 130159,14192,1870,290,49,8,1,360022957,29417919,2232792,191850,20001,2547,378,60,9,1
%N Triangle read by rows: T(n,k) (n>=1, 1 <= k <= n) = number of alternating anagrams on n letters (of length 2n) which are decomposable into at most k slices.
%H Andrew Howroyd, <a href="/A239894/b239894.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows)
%H Kreweras, G.; Dumont, D. , <a href="http://dx.doi.org/10.1016/S0012-365X(99)00238-1">Sur les anagrammes alternés</a>. (French) [On alternating anagrams] Discrete Math. 211 (2000), no. 1-3, 103--110. MR1735352 (2000h:05013).
%F T(n,k) = b(1)*T(n-1,k-1)+b(2)*T(n-2,k-1)+...+b(n-k+1)*T(k-1,k-1), where b(i) = A218826(i) for k > 1.
%F T(n,k) = Sum_{i=1..n-k+1} A218826(i)*T(n-i, k-1) for k > 1. - _Andrew Howroyd_, Feb 24 2020
%e Triangle begins:
%e 1
%e 1 1
%e 4 2 1
%e 25 9 3 1
%e 217 58 15 4 1
%e ...
%o (PARI) \\ here G(n) is A000366(n).
%o G(n)={(-1/2)^(n-2)*sum(k=0, n, binomial(n, k)*(1-2^(n+k+1))*bernfrac(n+k+1))}
%o A(n)={my(M=matrix(n,n)); for(n=1, n, for(k=2, n, M[n,k] = sum(i=1, n-k+1, M[i,1]*M[n-i, k-1])); M[n,1]=G(n+1)-sum(i=2, n, M[n,i])); M}
%o {my(T=A(10)); for(n=1, #T, print(T[n, 1..n]))} \\ _Andrew Howroyd_, Feb 24 2020
%Y Row sums are A000366.
%Y First column is A218826.
%K nonn,tabl
%O 1,4
%A _N. J. A. Sloane_, Apr 04 2014
%E Terms a(16) and beyond from _Andrew Howroyd_, Feb 19 2020