[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238914
Number of self-inverse permutations p on [n] where the maximal displacement of an element equals 3.
2
0, 0, 0, 0, 2, 7, 19, 47, 117, 284, 675, 1575, 3634, 8312, 18881, 42634, 95797, 214376, 478110, 1063242, 2358703, 5221606, 11538623, 25458412, 56095424, 123458153, 271440387, 596277224, 1308849869, 2871054209, 6294182153, 13791615999, 30206220592, 66131277054
OFFSET
0,5
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-1,-1,1,-4,-2,-3,-1,1,1,1).
FORMULA
G.f.: (x^3-x-2)*x^4 / ((x+1) *(x^6-x^5+x^4-3*x^3+3*x^2-3*x+1) *(x^4+x^3+x^2+x-1)).
EXAMPLE
a(4) = 2: 4231, 4321.
a(5) = 7: 15342, 15432, 35142, 42315, 42513, 43215, 45312.
a(6) = 19: 126453, 126543, 146253, 153426, 153624, 154326, 156423, 216453, 216543, 351426, 351624, 423156, 423165, 425136, 426153, 432156, 432165, 453126, 456123.
MAPLE
gf:= (x^3-x-2)*x^4 / ((x+1)*(x^6-x^5+x^4-3*x^3+3*x^2-3*x+1)*
(x^4+x^3+x^2+x-1)):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[(x^3 - x - 2) x^4/((x + 1) (x^6 - x^5 + x^4 - 3 x^3 + 3 x^2 - 3 x + 1) (x^4 + x^3 + x^2 + x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 09 2014 *)
LinearRecurrence[{3, -1, -1, 1, -4, -2, -3, -1, 1, 1, 1}, {0, 0, 0, 0, 2, 7, 19, 47, 117, 284, 675}, 40] (* Harvey P. Dale, Jun 12 2021 *)
CROSSREFS
Column k=3 of A238889.
Sequence in context: A209400 A112304 A006589 * A227946 A328990 A099484
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Mar 07 2014
STATUS
approved