[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238829
a(n) = A238823(n) - A238826(n).
6
1, 1, 2, 5, 12, 31, 77, 192, 474, 1170, 2881, 7097, 17477, 43050, 106043, 261235, 643552, 1585421, 3905750, 9621993, 23704161, 58396118, 143860974, 354406732, 873093707, 2150897733, 5298813853, 13053818630, 32158552201, 79223751853, 195170567014, 480809724213
OFFSET
1,3
LINKS
V. M. Zhuravlev, Horizontally-convex polyiamonds and their generating functions, Mat. Pros. 17 (2013), 107-129 (in Russian). See the sequence a(n).
FORMULA
G.f.: -x*(x-1)*(2*x^5+x^4+x^3-2*x^2-x+1) / ( 1-3*x+4*x^3-x^4-x^5-3*x^6+x^7 ). - R. J. Mathar, Mar 20 2014
MAPLE
g:=proc(n) option remember; local t1;
t1:=[2, 3, 6, 14, 34, 84, 208, 515];
if n <= 7 then t1[n] else
3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
[seq(g(n), n=1..32)]; # A238823
d:=proc(n) option remember; global g; local t1;
t1:=[0, 1];
if n <= 2 then t1[n] else
g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
[seq(d(n), n=1..32)]; # A238824
p:=proc(n) option remember; global d; local t1;
t1:=[0, 0, 0, 1];
if n <= 4 then t1[n] else
p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
[seq(p(n), n=1..32)]; # A238825
h:=n->p(n+3)-p(n+1);
[seq(h(n), n=1..32)]; #A238826
r:=proc(n) option remember; global p; local t1;
t1:=[0, 0, 0, 0];
if n <= 4 then t1[n] else
r(n-2)+p(n-3); fi; end proc;
[seq(r(n), n=1..32)]; # A238827
[0, seq(d(n-1)+p(n), n=2..32)]; #A238828
a:=n->g(n)-h(n);
[seq(a(n), n=1..32)]; #A238829
MATHEMATICA
CoefficientList[Series[(1 - x) (2 x^5 + x^4 + x^3 - 2 x^2 - x + 1)/(1 - 3 x + 4 x^3 - x^4 - x^5 - 3 x^6 + x^7), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 21 2014 *)
LinearRecurrence[{3, 0, -4, 1, 1, 3, -1}, {1, 1, 2, 5, 12, 31, 77}, 40] (* Harvey P. Dale, Jun 08 2018 *)
PROG
(Magma) I:=[1, 1, 2, 5, 12, 31, 77]; [n le 7 select I[n] else 3*Self(n-1)-4*Self(n-3)+Self(n-4)+Self(n-5)+3*Self(n-6)-Self(n-7): n in [1..35]]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 08 2014
STATUS
approved