[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238632
Number of partitions of 5^n into parts that are at most 5.
2
1, 7, 377, 106852, 55567352, 33432635477, 20735819929227, 12940003469288602, 8085018247233663602, 5052825953808096554227, 3157977415776418319210477, 1973731034215692844676632352, 1233581290054852867292137569852, 770988230493054044846859764522977
OFFSET
0,2
LINKS
FORMULA
a(n) = [x^(5^n)] Product_{j=1..5} 1/(1-x^j).
G.f.: (1953125*x^5+4828125*x^4-2015125*x^3+96440*x^2-774*x+1) / Product_{j=0..4} 1-5^j*x.
MAPLE
gf:= (1953125*x^5+4828125*x^4-2015125*x^3+96440*x^2-774*x+1)/mul(1-5^j*x, j=0..4):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20);
CROSSREFS
Row n=5 of A238016.
Sequence in context: A332137 A261824 A084001 * A073908 A250345 A201114
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 01 2014
STATUS
approved