[go: up one dir, main page]

login
A238423
Number of compositions of n avoiding three consecutive parts in arithmetic progression.
16
1, 1, 2, 3, 7, 13, 22, 42, 81, 149, 278, 516, 971, 1812, 3374, 6297, 11770, 21970, 41002, 76523, 142901, 266779, 497957, 929563, 1735418, 3239698, 6047738, 11289791, 21076118, 39344992, 73448769, 137113953, 255965109, 477835991, 892023121, 1665227859
OFFSET
0,3
COMMENTS
These are compositions of n whose second-differences are nonzero. - Gus Wiseman, Jun 03 2019
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..400
FORMULA
a(n) ~ c * d^n, where d = 1.866800016014240677813344121155900699..., c = 0.540817940878009616510727217687704495... - Vaclav Kotesovec, May 01 2014
EXAMPLE
The a(5) = 13 such compositions are:
01: [ 1 1 2 1 ]
02: [ 1 1 3 ]
03: [ 1 2 1 1 ]
04: [ 1 2 2 ]
05: [ 1 3 1 ]
06: [ 1 4 ]
07: [ 2 1 2 ]
08: [ 2 2 1 ]
09: [ 2 3 ]
10: [ 3 1 1 ]
11: [ 3 2 ]
12: [ 4 1 ]
13: [ 5 ]
MAPLE
# b(n, r, d): number of compositions of n where the leftmost part j
# does not have distance d to the recent part r
b:= proc(n, r, d) option remember; `if`(n=0, 1,
add(`if`(j=r+d, 0, b(n-j, j, j-r)), j=1..n))
end:
a:= n-> b(n, infinity, 0):
seq(a(n), n=0..45);
MATHEMATICA
b[n_, r_, d_] := b[n, r, d] = If[n == 0, 1, Sum[If[j == r + d, 0, b[n - j, j, j - r]], {j, 1, n}]]; a[n_] := b[n, Infinity, 0]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Nov 06 2014, after Maple *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], !MemberQ[Differences[#, 2], 0]&]], {n, 0, 10}] (* Gus Wiseman, Jun 03 2019 *)
CROSSREFS
Cf. A238424 (equivalent for partitions).
Cf. A238569 (equivalent for any 3-term arithmetic progression).
Sequence in context: A048216 A003509 A238432 * A133370 A237283 A332861
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Feb 26 2014
STATUS
approved